If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-2k-63=0
a = 1; b = -2; c = -63;
Δ = b2-4ac
Δ = -22-4·1·(-63)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-16}{2*1}=\frac{-14}{2} =-7 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+16}{2*1}=\frac{18}{2} =9 $
| 14x+2=9x−39x−3 | | 16+1-8h-h=-5-3 | | 6(5x-6)=-6 | | 3(3x-2)=2(x+4) | | 180=-9x | | n=3n-27 | | 8/x–10=10+20 | | y+2.3=2.5 | | 4(-4+7x)=-100 | | 9+2y=1+6y | | V(a)=(8+-2×)(6+-2×)(a) | | (5x–21)+(7x–39)=180 | | 5(x+4)=7x–26 | | x-7=x=19 | | 2(4-3x)=3(3x+4) | | 12n-12=180 | | -12=6-8x | | 2(34-3x)=3(3x+4) | | 10+-2v=-5v-50 | | 1-14x=14+3x+11 | | -3(3+6x)=135 | | 21x-20-x2=0 | | 3(2x+1=5x+7 | | X+m=16 | | x+2=x+2=6x−18 | | -5c+7=22-2c | | 21-20-x2=0 | | X2-z-6=0 | | X2-21x-20=0 | | 3t-1=-22 | | 7x+9+22=180 | | 17-3x=x+5 |